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Abstract: High-speed laser scanning microscopy frequently relies on resonant scanners due
to their order of magnitude increase in imaging rate compared to conventional galvanometer
scanners. However, the use of a nonlinear scan trajectory introduces distortion that must be
corrected. This manuscript derives a new algorithm based on filtered Hermite polynomial
interpolation that provides the optimal shot-noise-limited SNR for a fixed number of photons and
provides higher spatial accuracy than previous methods. An open-source library is presented
using the Intel advanced vector instruction set (AVX) to process up to 32 samples in parallel.
Using this approach, I simultaneously demonstrate lower shot noise variance, moderately higher
spatial accuracy and greater than 1 gigapixel per second interpolation rate on a desktop CPU.
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1. Introduction

Resonant scanning mirrors combine very high-speed scanning over a wide angular range with
excellent light throughput. As result, they have become widely used in laser scanning techniques
such as confocal microscopy, multiphoton microscopy, STED microscopy, LIDAR, among many
others. However, resonant scanners obtain their high speed and angular deflection by oscillating
through a sinusoidal trajectory. As a result, they are bidirectional scanners that produce a warped
image in which pixels have a time-varying width. In contrast to polygonal scanners and many
galvanometers, which are unidirectional and produce a more or less undistorted image, at a
minimum each odd scan line must be reversed to produce an interpretable image. Additional
steps may also be required to compensate for the nonlinear (sinusoidal) scanner trajectory.

The literature on the correction of resonant scanner images dates back many decades [1]. The
simplest solution is to limit imaging to the central part of the resonant scan where the trajectory
is somewhat more linear [2]. However, this approach is rarely used because it wastes much of
the scan cycle and still results in a modestly distorted image that is typically undesirable for
microscopic imaging. Historically, another extremely common approach was to use a frame
grabber that could accept a nonuniform pixel clock. Analog circuitry was then used to generate
pixels at time intervals that canceled out the variation in the resonant scanner velocity, resulting
in a uniformly sampled image [3]. The advantage of this approach is that the only required
computation is the reversal of the backwards half of the scan, and so it could be used with early
computers. However, as imaging speeds have increased, frame grabbers have been replaced with
conventional A/D converters that are usually not compatible with highly nonuniform sampling
clocks. There are more subtle disadvantages of the analog pixel clock as well. First, the hardware
pixel clock is typically synchronized to a uniform system clock inside the device, thus the
continuously distributed true pixel locations are rounded to the nearest neighboring clock cycle,
resulting in distortion of the image point spread function [1]. Second, during the oversampled
portion on the edges of the scan, all photons not lining up with the pixel clock samples are
discarded, resulting in loss of sensitivity. Thus, this approach is clearly not optimal.
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An alternative approach favored in more recent publications is to perform numerical correction
to resample the nonuniform resonant points into a uniformly sampled line. While it is straight-
forward to derive an relationship between samples along the resonant scan and pixels in the
desired rectilinear image [4], interpolation is always required because the uniformly spaced pixels
will not correspond to integer samples in the resonant scan. One approach is to simply round
fractional pixel values to the nearest neighboring sample [2,5]. While this has the approach of
low computational complexity, it retains the disadvantage of rounding to the nearest sample in
analog pixel circuits. Indeed, analysis of nearest neighbor interpolation shows that it introduces
substantial loss of high frequencies and reduced SNR relative to higher order interpolation [6].
Linear interpolation is also widely used [4], and has the advantage of much higher accuracy for
only a minor increase in complexity. Less obvious, linear interpolation incorporates information
from up to two points, and thus provides higher noise rejection because shot noise between
the two points is partially averaged. However, while linear interpolation is superior to nearest
neighbor interpolation, it becomes less accurate further from integer index values. Finally, all
forms of interpolation have limited order, and thus can only incorporate photons from a limited
number of samples, resulting in wasted photons at the edge of images.

A general disadvantage of numerical interpolation is the relatively high computational cost.
Sampling rates in resonant scanning are on the order of 80-140 MHz [7,8] and typically interpolate
1024 or 2048 pixels per direction, per line. For a 12 KHz (unidirectional) scan rate, this equates to
25-50 Mpixel/s. This cost is then compounded across all channels, of which there are typically at
least 2-4. Thus, a system may be expected to interpolate 100s of Mpixel per second in real-time.
One approach to this has been to show only the distorted resonant samples with no correction
[2,9] or to use lower order interpolation [5] for real-time preview and then reconstruct higher
resolution images only in post-processing. While more computationally efficient, this approach
is complicated, results in users seeing a distorted image during acquisition, and saves significant
redundant information to disk, bloating file sizes. Conversely, some commercial products have
adopted FPGA acceleration, adding dedicated hardware to perform interpolation. However, this
approach is complex, while restricting flexibility as the fixed FPGA hardware will typically only
be capable of processing certain numbers of channels and frame sizes.

An alternative approach to accelerating processing is to use the single instruction, multiple
data (SIMD) hardware units built into all modern CPUs. This hardware can perform common
operations such as multiplication on batches of samples in parallel, vastly accelerating processing
of tasks such as filtering and interpolation that are composed of repetitive operations on data.
The Intel AVX instructions operate on 256 bit vectors which can contain both floating point
(AVX1) and integer (AVX2) data types as well as 512 bit vectors (AVX512) [10]. For 16 bit
pixel values, this corresponds to 16 and 32 elements per vector, respectively. Previous work has
demonstrated order of magnitude increases in throughput processing image data [11], suggesting
that radical improvements in processing might be possible for resonant scanning systems.

In this work, I first derive an expression for the mapping rectilinear pixel coordinate to resonant
sample number. Using this expression, I calculate the Nyquist sampling rate as a function of pixel
number, and then compute per-pixel finite impulse response (FIR) filter coefficients that will
optimally filter samples to incorporate all available photon information. Next, I implement 4-tap
cubic Hermite polynomial interpolation, which enables greater accuracy, less loss of resolution
and higher SNR. Finally, I provide an open-source implementation using SIMD processing,
demonstrating more than 1 Gigavoxel/s interpolation rate on a single CPU core. I show that this
algorithm and implementation enable real-time processing with higher SNR and accuracy than
previous approaches.
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2. Derivation

The derivation of Haji-Saeed et al. [4] provides an excellent overview of the forward transformation
from sinusoidal trajectory to linear. I proceed by inverting this transformation, developing an
expression for the raw (sinusoidal) sample values that can be fit to a polynomial to yield the
linearly spaced pixels. As explained in [4], a bidirectional linear scan trajectory with n uniformly
spaced pixels over focal length r, angle θ0 for the L’ pixel has the form:

y(L′) =

⎧⎪⎪⎨⎪⎪⎩
−rθ0 + 2rθ0L′

n , (L′<n)

rθ0 − 2rθ0(L′−n)
n , (L′ ≥ n)

(1)

where the first n pixels represent the forward scan, and the next n represent the backward scan
returning to the initial position. Conversely, a resonant scan over m nonuniform forward and m
backward samples for the L sample has the form:

y(L) = −rθ0 cos
2πL
m

, (0 ≤ L′ ≤ 2m) (2)

Equating these expressions for position y:⎧⎪⎪⎨⎪⎪⎩
−rθ0 + 2rθ0L′

n = −rθ0 cos 2πL
m , (L′<n)

rθ0 − 2rθ0(L′−n)
n = −rθ0 cos 2πL

m , (L′ ≥ n)
(3)

Rearranging terms, taking the arccosine, and then solving for L as a function of L’:

L =
⎧⎪⎪⎨⎪⎪⎩

m
2π cos−1 [︁1 − 2L′

n
]︁

, (L′<n)
m
2 +

m
2π cos−1 [︁ 2

n (L
′ − n) − 1

]︁
, (L′ ≥ n)

(4)

This expression relates the resonant (L) sample indices to the linear (L’) pixel numbers. Thus,
given a pixel number, the corresponding (generally non-integer) sample index can be easily
calculated (Fig. 1(A)). Furthermore, since L is a function of both m (the number of samples
recorded for each forward and backward resonant sweep) and n (the number of linearly spaced
pixels to reconstruct), this equation is fully general for any sampling rate, resonant scanner
frequency or number of pixels to be calculated per frame. An additional feature of this derivation
is that it enables calculating the degree to which each pixel in the output image is oversampled
which can be used to reject excess shot noise during linearization by filtering photon counts from
multiple samples before interpolation. Figure 1(B) plots the change in the input sample number
for each output pixel, showing the large change in oversampling over the course of each scan.
Areas containing spatial frequencies in green should be retained while those in red contain only
broadband shot noise and should ideally be rejected during linearization.

The sample indices calculated with Eq. (4) are in general not integers and thus interpolation is
required to calculate pixel values at non-integer samples. Furthermore, out-of-band shot noise
is present in each sample that should be removed prior to linearization in order to maximize
sensitivity. This is implemented with a two-step approach. First, for each input sample, the
maximum spatial frequency (MSF) relative to the center of the field of view is calculated as the
absolute inverse difference between the L and L+ 1 samples:

MSF =
|︁|︁|︁|︁ 1
y(L) − y(L − 1)

|︁|︁|︁|︁ (5)

Second, for each MSF, an odd-length N+ 1 tap FIR filter is specified with a cut off frequency
f3dB according to:

N = RoundUpToEvenNumber(3/MSF) (6)
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Fig. 1. A) Relationship between input sample number and output pixel number. B) Change
in the output pixel number relative to the input sample number. As the scanner velocity slows
towards the edges while the sampling rate remains constant, the maximum spatial frequency
in the image diminishes relative to the Nyquist sampling rate while the shot noise power
spectrum remains uniform. As a result, pixels towards the edges contain out of band shot
noise (red area) that can be removed during interpolation without loss of signal (green area).

Fig. 2. Variance calculated over 4 frames for interpolation to 2048, 1024 and 512 pixels
using nearest neighbor, linear and filtered Hermite interpolation. Filtered Hermite shows
dramatically lower variance at the edges and for lower pixel counts than the other methods.
Nearest neighbor is simply the raw shot noise variance. Linear interpolation oscillates
between the same variance as nearest neighbor (integer indices which reduce to nearest
neighbor) and a lower value (half-integer indices which average two adjacent samples but
attenuate higher frequencies).

f3dB = MSF +
1.75
N + 1

(7)

where 1.75/N represents the approximate half width of the transition band of a Hamming
windowed low pass filter and odd length is used to enable zero-delay filtering. However, for
pixels with spatial frequencies close to unity, N is small, which results in a transition band edge
at greater than Nyquist. Thus, if 1.75/N is greater than 0.25, N is iteratively increased until it
falls below that threshold. Next, the windowed-sinc method with a Hamming window is used to
calculate the FIR coefficients and then filter the sample data [12]:

FIRCoefs = WindowedSincCoefficients(f3dB, N + 1) (8)

yfiltered(L′) = Filter
(︃
FIRCoefs, y

(︃
L′ −

N
2
. . . L′ +

N
2

)︃)︃
(9)
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where FIRCoeffs are the N+ 1 FIR filter tap coefficients and Lfiltered is the low pass filtered sample
with out of band shot noise removed. Notably, because the filter taps are odd, the L′− N

2 . . . L
′+ N

2
sample indices result in a filter with no delay relative to L’. Finally, cubic Hermite interpolation
over the filtered points enables calculation of the value of yfiltered at non-integer values L:

Y_interpolated(L) = CubicHermiteInterp(yfiltered(L′ − 3 . . . L′, L)) (10)

CubicHermiteInterp:

frac = L′ − floor (L′) ;

Y = (3 ∗ (y (L′ − 2) − y (L′ − 1)) + y (L′) − y (L′ − 3)) / 2;

Y = (Y ∗ frac);

Y = Y + 2 ∗ y (L′ − 1) + y (L′ − 3) − ((5 ∗ y (L′ − 2) + y (L′)) / 2);

Y = (Y ∗ frac);

Y = Y + (y (L′ − 1) − y (L′ − 3)) / 2;

Y = (Y ∗ frac);

Y = Y + y (L′ − 2) ;

(11)

Consequently, an entire resonant scan can be linearized by performing this operation n times
to compute the forward direction, skipping ahead n pixels, and then stepping backwards (due to
the reverse order of the backwards scan) performing the operation a further n times from pixel
2n-1 to n.

3. Open-source implementation

At 2048 pixels per line, the above algorithm requires ∼88,800 FIR taps per resonant scan per
spectral channel and a further 14 floating point operations per interpolated pixel per spectral
channel, or about 9 billion floating point operations per second (FLOPs) when operated in
4-channel mode with a 12 KHz resonant scanner. This further increases to 36 billion FLOPs
when operated in 16-channel mode. I developed an open-source library that implements the
above algorithm using AVX intrinsics, operating at> 1 gigapixel/s, it can perform 16-channel
interpolation at faster than 1.5 times real-time on a single core of an Intel i7-12700 k with
AVX512 and FLOAT16 hardware extension enabled.

The implementation precomputes all FIR taps and all L indices and assumes that 4-channel
or 16-channel sample data is provided as interleaved 16-bit samples as is typical for nearly all
high-speed digitizers. In 16-channel mode, all 16 channels from 2 samples are loaded into a
single 512-bit ZMM register, are normalized and then converted into half precision (float16)
format. A pair of FIR tap coefficients is loaded and broadcast into 16 positions each of a ZMM
register. Finally, a single fused-multiply operation calculates all 32 taps in one cycle. In 4-channel
mode, 4 samples are processed in parallel using a 256-bit YMM register. As a result of the
narrower register, throughput is lower in 4-channel mode, but overall frame rate is higher due to
less data per second.

After filtering each sample, the algorithm checks to see if all 4 filtered samples required for
the next interpolation are available with the goal of interpolating immediately while the filtered
data is still in local cache to avoid memory latency. In 16-channel mode, all 16 channels from
the 4 samples needed for 4-tap cubic Hermite are loaded into 4 YMM registers. Interpolation
then proceeds on 16 element YMM vectors. This repeats 16 times, yielding 16 samples that are
16-way interleaved. These are loaded into ZMM registers and permuted to deinterleave before
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finally scattering to 16 separate channel buffers 256 bits at a time. In testing, the larger write
size was essential to efficiently utilizing memory bandwidth. In 4-channel mode, processing is
more complex because 4 sequential samples of 4 channels each must be permuted 4 times each
to obtain the 4 packed YMM registers. Interpolation then proceeds as in the 16-channel case,
except with 4 channel buffers written 256 bits at a time. In either case, upon reaching the end of
the forward sweep, the software moves the output pointer to the end of the line of pixels and then
fills in backwards sweep from the right-most pixel moving backwards in memory towards the
left-most pixel in order to account for the reversed direction on the backwards sweep.

Example raw image files and source code in both MATLAB and AVX are available at [23].

4. Results

4.1. Performance

Table 1 summarizes the performance of the library. In testing, both configurations were real-time,
with 16-channel being more optimized and avoiding the need for some permute operations due to
larger continuous data size, but 4-channel having faster frame times due to less data. I further
confirmed good scaling out to 4 cores in 16-channel mode (> 4 billion pixels/s), beyond which the
bandwidth limitations of DDR4 limited scaling. In real-time operation on a microscope in which
the digitizer and other software compete for RAM bandwidth, I found the fastest processing with
3 parallel threads.

Table 1. Linearization performance on a Core i7-12700 k with
DDR4-3000 RAM.

Channels Millions of pixels per second Frame time (2048× 2048)

4 546 29 ms

16 1154 54 ms

4.2. Sensitivity

I next characterize the sensitivity improvement from filtered Hermite interpolation by recording
uniform fluorescent targets using a two photon microscope described previously [7]. In brief, a
12 KHz galvo-resonant scan head (LSK-GR12, Thorlabs) using the Novanta CRS-12 k scanner
and a FemtoFiber ultra 920 laser excited a fluorescent target. Fluorescence was detected with
using high dynamic range silicon photomultipliers [13] and then digitized with an AlazarTech
ATS9416 in 16-channel mode. Following recording, the raw sample data was processed and the
shot noise variance of the uniform target calculated. As expected, filtered Hermite interpolation
provides significantly lower shot noise variance with oversampled data.

4.3. Accuracy

Next fluorescent beads were imaged, and data sets linearized with both filtered Hermite and
linear interpolation (Fig. 3). As anticipated, while the overall accuracy of linear interpolation
was high, and it provided nearly identical results to higher order Hermite interpolation for indices
close to integers (green arrows), it deviated otherwise (red arrows), resulting in distorted signal
amplitude and point spread function.

4.4. Biological imaging

Finally, I imaged human skin excisions obtained under a protocol approved by the University of
Rochester Medical Center Research Subjects Review Board. Figure 4 shows the raw sample data,
the deinterleaved and linearized data as well as cropped areas processed with filtered Hermite
and linear interpolation.
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Fig. 3. Fluorescent beads linearized with linear and filtered Hermite interpolation at the
center of a 2048 pixel field of view. Linear interpolation frequency response varies randomly
based on the fraction part of the index. Some peaks (green) correspond to near-integer
sample indices and closely follow filtered Hermite. Others (red) have near-half-integer
sample indices and attenuate the extreme positions through averaging.

Fig. 4. 1024 bidirectional lines of human skin. Raw shows the 1024 bidirectional scan lines
of 6656 samples (3328 per direction) returned by the ADC. The dewarped frame shows the
linearized data processed with filtered Hermite interpolation to produce 2048× 2048 pixels.
Filtered Hermite and linear insets show the blue box processed with both filtered Hermite
and linear interpolation, showing reduced shot noise at the image edges due to the filtered
Hermite algorithm.
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5. Discussion

Linearization of resonant scanner images is an important but often overlooked aspect of high-
speed imaging in applications such as neuroscience [14–16], laser ophthalmoscopy [17,18],
and super-resolution microscopy [19–22] microscopy. The lack of a high-accuracy and high-
speed reference implementation has resulted in a variety of ad hoc solutions that have limited
performance and/or accuracy. To address this, I build on previous work to derive an algorithm
that is optimal from the point of view of extracting maximum shot noise limited sensitivity while
retaining high accuracy and then provide a highly optimized c reference implementation as well
as MATLAB example code. While I focused on implementation on x86 PCs, the algorithm uses
only a small amount of memory and could be readily implemented on an FPGA.

In practical terms, the above algorithm has some advantages over the nearest neighbor and
linear interpolation proposed previously. First, sensitivity is dramatically improved at the edge
of images, where SNR is typically lowest in applications such as two photon microscopy and
confocal microscopy due to field-dependent optical aberrations. Improving SNR at the edges
can increase maximum usable field of view and facilitate more accurate stitching of mosaic
images by providing higher SNR for overlapped pixels [7]. Second, if reconstructed images are
undersampled or if a system is operating with a high sampling clock (for example, to minimize
sample jitter), the SNR improvement is extended to even the center of the field of view, improving
image sensitivity and/or maximum imaging depth. Finally, the poor (nearest neighbor) or
inconsistent (linear) spatial frequency reproduction of common methods is avoided, which may
be important in applications such as deconvolution, adaptive optics and quantitative imaging
where a pixel-dependent point spread function is undesirable. The disadvantage of this method is
that more multiplications are required per pixel, but this is overcome using SIMD processing.

It is interesting to note that SNR and point spread function for common interpolation methods
varies from pixel to pixel based on how close each pixel is to a whole sample index as demonstrated
in Fig. 2 and Fig. 3. In contrast, this algorithm provides a more uniform point spread function
and an SNR that varies gradually across the image field and to an extent that can be configured
for the application. While the goal of this work was optimal shot-noise-limited SNR for a fixed
number of photons, if a more uniform SNR were required (e.g. for deconvolution), f3dB in Eq. (7)
could be constrained or set to a constant, resulting in a more or even completely uniform SNR at
the expense of some sensitivity.

6. Conclusion

I derive and then implement in an open-source library an algorithm for resonant scanner
linearization that is optimal from the point of view of maximizing sensitivity while providing
very high accuracy using higher order interpolation. SIMD instructions are used to achieve faster
than real-time processing. Adoption of this algorithm would improve sensitivity and accuracy of
high speed confocal and two photon imaging in many applications.
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